单模 As-Se 红外玻璃光纤的制备及其性能研究

薛祖钢^{1,2},陈朋^{1,2},田优梅^{1,2},潘章豪^{1,2},赵浙明^{3*},

王训四^{1,2},张培晴^{1,2},戴世勋^{1,2},聂秋华^{1,2}

1宁波大学高等技术研究院红外材料及器件实验室,浙江宁波 315211;

2浙江省光电探测材料及器件重点实验室,浙江 宁波 315211;

3嘉兴学院南湖学院,浙江嘉兴 314001

摘要 随着红外光纤制备技术的不断发展,低损耗、高非线性且结构完美的红外硫系光纤的研制迫在眉睫。采用 了传统的熔融淬冷法和动态蒸馏纯化工艺制备了 As₄₀ Se₅₈ Te₂和 As₄₀ Se₅₀两种玻璃样品,基于两次多步挤压法制备 了完美芯包阶跃结构的硫系光纤预制棒,在聚合物的保护下拉制出了损耗较低的阶跃型单模硫系玻璃光纤。结果 表明:蒸馏纯化工艺可有效去除硫系玻璃中大部分杂质,2%摩尔百分比的 Se 被 Te 替换可有效实现小数值孔径并 达到单模传输条件,采用截断法对单模硫系光纤进行了损耗测试,其最低损耗为 1.66 dB/m(6.06 μm),工作波段为 2.5~12 μm。以光参量放大器(OPA)为抽运源获得了覆盖 1.5~13.2 μm(40 dB 带宽)的超连续谱输出,光纤有较 好的中远红外传输性能和极高的光学非线性性能。

关键词 光纤光学;红外玻璃光纤;蒸馏纯化;非线性光学材料 中图分类号 TN253 文献标识码 A

doi: 10.3788/CJL201845.0706001

Fabrication of Single-Mode As-Se Infrared Glass Fiber and Its Performance

Xue Zugang^{1,2}, Chen Peng^{1,2}, Tian Youmei^{1,2}, Pan Zhanghao^{1,2}, Zhao Zheming³, Wang Xunsi^{1,2}, Zhang Peiqing^{1,2}, Dai Shixun^{1,2}, Nie Qiuhua^{1,2}

 $^1Laboratory\ of\ Infrared\ Material\ and\ Devices\ ,\ The\ Research\ Institute\ of\ Advanced\ Technology\ ,$

Ningbo University, Ningbo, Zhejiang 315211, China;

²Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China; ³Nanhu College, Jiaxing University, Jiaxing, Zhejiang 314001, China

Abstract With the development of infrared optical fiber technology, it is urgent to develop an infrared low loss chalcogenide optical fibers with perfect-structure and high nonlinearity. In this paper, the two kinds of glass samples of $As_{40}Se_{58}Te_2$ and $As_{40}Se_{60}$ are prepared by the traditional vacuum melt-quenching method and dynamic distillation purification process. Then we obtain a fine-structured chalcogenide optical fiber prefabricated rod prepared by two multi-step extrusion method. After that, the preform is drawn into a low loss step type single-mode chalcogenides glasses fiber under the protection of polyether sulfone (PES) polymer. The results show that the distillation process can effectively remove most of the impurities in the chalcogenide glasses. 2% mole percent of Se is replaced by Te, which can effectively achieve a small numerical aperture (NA) and single-mode transmission characteristics. The single-mode chalcogenides fiber loss test is measured by the truncation method with a Fourier transform infrared

收稿日期: 2018-01-29; 收到修改稿日期: 2018-03-08

基金项目:国家自然科学基金(61705091,61627815,61377099)、浙江省自然科学基金(LR18F050002)、浙江省光电探测 材料及器件重点实验室开放课题(2017004)、嘉兴市科技局项目(2017AY13010)、宁波大学王宽诚幸福基金

作者简介:薛祖钢(1993—),男,硕士研究生,主要从事硫系光纤制备及其光学性能方面的研究。

E-mail: xuezugang2016@163.com

导师简介:王训四(1979—),男,博士,博士生导师,主要从事红外光学材料、光纤光学器件等方面的研究。

E-mail: wangxunsi@nbu.edu.cn

* 通信联系人。E-mail: zhaozheming_27@sina.com

spectroscopy spectrometer. The minimum loss of this fiber can be reduced to 1.66 dB/m at 6.06 μ m and these glasses working band is from 2.5 to 12 μ m. The output of a supercontinuum spectrum covering 1.5-13.2 μ m (40 dB bandwidth) is obtained with an optical parametric amplifier (OPA) as the pump source. The fiber has good mid-far infrared transmission performance and extremely high optical nonlinearity.

Key words optical communications; infrared glass fiber; distillation and purification; nonlinear optical materials OCIS codes 060.2390; 060.2280; 160.4330

1 引 言

中红外光谱区具有很大的科学应用价值,这是 因为绝大多数分子会在该区域显示出基本的振动吸 收并留下独特的光谱指纹[1-2],该光谱区可以用来探 测导致全球变暖的温室气体,如 CO₂,CH₄等。中红 外光谱的发展需要开发高一致性、宽带宽和高亮度 的高质量光源,而基于激光非线性产生的超连续谱 (SC)作为一种新型高相干光源可以满足多种激光 频谱的应用需求,如荧光显微镜、光学连贯断层扫描 和光谱学等^[3]。然而,传统以 SiO₂为玻璃基质的石 英玻璃光纤由于受到高声子能量的限制,在 2.4 μm 以上光波长区域存在强烈的多声子吸收而透光截止 的现象,这极大地限制了其在中红外(MIR)光学方 面的应用。为了解决这个问题,寻求合适的玻璃基 质材料受到了越来越多的关注,此前报道的有氟化 物、重金属氧化物碲酸盐和硫族化合物玻璃等[4-9]。 其中硫族化合物玻璃最远可以实现 25 µm 以上的 远红外范围透光[10-11],并且还具有比二氧化硅高出 1000 倍以上的强三阶光学非线性。因此,具有高非 线性和超宽红外透射率的硫族化合物玻璃成为产生 中红外超连续谱的最佳玻璃基质[12]。迄今为止,国 外基于大芯径 As₂S₃光纤,已获得了 1.5~7 μm 超 连续谱输出[13];丹麦科技大学利用超大数值孔径的 As₂Se₃/Ge₁₀As_{23.4}Se_{66.6}多模光纤抽运获得了 1.4~ 13.3 μm 的超宽超连续谱^[12];日本丰田工业大学利 用 3 cm 超短 As₂Se₃/AsSe₂ 光纤在反常色散区抽 运,实现了 2.0~15.1 µm 的中红外超连续谱输 出[14],但其光纤的损耗谱、结构分析等并没有系统 给出;国内江苏师范大学研制的抽运长度为 22 cm 的 Ge-As-Se/Ge-As-S 阶跃型光纤,实现了 1.9~ 8.2 μm的超连续谱输出^[15]。除了传统阶跃型硫系 光纤超连续谱输出之外,硫系微结构光纤以及硫系 拉锥光纤的红外超连续谱输出也一直在研究当 中[16],基于 As-Se 拉锥和微结构硫系光纤的超连续 谱输出最高纪录仅为1.7~7.5 μm^[17-19],所以,As-Se 拉锥和微结构硫系光纤目前并没有太宽的超连续谱 输出,主要的研究还在于阶跃型 As-Se 硫系光纤中。

单模的硫系光纤及其超连续谱研究目前仍处于探索 阶段,困难主要集中在单模尺寸的控制和损耗的降 低上。此外,以前报道的 Ge-As-Se-Te 光纤虽具有 较低的损耗和较宽的工作波段(3~12.5 μm)^[20-21], 但不能工作于近红外波段,而新型的 Ge-Te-AgI 光 纤则更适用于远红外波段(其工作波段为 5~ 15 μm)^[22-23],不过其损耗较高且价格昂贵。相比而 言,As-Se 玻璃原料成本优势明显,且具有良好的热 稳定性和优良的近、中红外性能,是当前中红外波段 所用光纤的主流材料。

本实验以红外硫系玻璃 As40 Se60 作为光纤玻璃 基质,采用动态蒸馏提纯技术制备高纯度的 As40 Se58 Te2硫系玻璃并作为光纤纤芯;然后通过两 次多步挤压法制备芯包结构的硫系光纤预制棒,并 利用气氛保护拉丝,实现较低损耗阶跃型单模 As-Se 光纤制备;相比于传统的双坩埚法,该挤压方法 具有可任意定制芯包比的优势。最后利用飞秒激光 和光参量放大器(OPA)进行光纤非线性性能测试, 实现近红外到中远红外超连续谱的输出。

2 实 验

2.1 玻璃样品的制备

为制备符合光纤结构要求的芯包预制棒,选用 As₄₀Se₅₈Te₂玻璃作为纤芯材料,选用 As₄₀Se₆₀玻璃 作为包层材料,在纤芯组分中添加了 Te 元素,用来 增加纤芯的折射率。

为了制备低损耗的红外硫系光纤,选用了高纯 度的 As、Se 和 Te 作为原料,在真空和加热等条件 下进行 动态蒸馏提纯,并使用传统的熔融-淬冷 法^[24]制备组分分别为 As₄₀ Se₆₀ 和 As₄₀ Se₅₈ Te₂ 的高 纯度硫系玻璃柱状样品。其制备过程如下:首先将 封装用的石英管和蒸馏管先用王水浸泡 8 h,然后 用去离子水清洗多次后置于 160 ℃温度下的干燥箱 干燥 5 h。选用纯度为 5 N 的 As、Se、Te 为原料,将 原料按所用的化学配比精确称量后放入预处理过的 蒸馏管中,并在原料中加入 Mg 作为除氧剂;对蒸馏 管进行抽真空,同时用电加热炉对蒸馏管和石英管 加热以除去原料表面杂质水,当真空低于 10⁻³ Pa 时,用炔氧焰密封石英管,然后将其置于管式加热炉 中进行高温蒸馏,其蒸馏温度约为600℃,用以除去 As一O等杂质峰。蒸馏结束后,将装有原料的石英 管用炔氧焰封断后,放入摇摆炉中进行高温熔制,并 在最高温度为620℃的环境下进行匀速摇摆12h, 以保证原料能充分均匀混合和完全融合,之后降温 至480℃,将装有熔融玻璃液的石英管从摇摆炉中 取出进行淬冷处理,待石英管内壁与玻璃完全脱离 后,迅速将其放入提前升温好的退火炉中缓慢退火, 在160℃下保温5h,然后经过12h缓慢降至室温; 从石英管中取出 As40 Se50 和 As40 Se58 Te2玻璃锭,进 行后续加工和性能测试。

2.2 As₄₀Se₆₀/As₄₀Se₅₈Te₂预制棒及光纤制备

取出制备的玻璃锭进行切割,分别获得直径 9 mm、高度 20 mm的As₄₀Se₅₈Te₂玻璃样品和直径 46 mm、高度 20 mm的As₄₀Se₆₀玻璃样品。用 Al₂O₃抛光粉对两种玻璃样品的表面进行抛光处 理,以减小预制棒芯包界面的缺陷,避免引起的光纤 损耗;对玻璃和挤压模具进行清洗烘干后,将 As₄₀Se₅₈Te₂和As₄₀Se₆₀玻璃依次放置在对应的挤压 模具中,如图1(a)所示,然后将挤压模具放入挤压 机的炉膛里。由于芯包玻璃都含有As元素,在加 热过程中,玻璃表面会由于 As 的氧化出现变灰现 象,为了获得高质量的光学预制棒,通入高纯氮气作 为加热时的保护气体,同时,氮气也可以除去炉膛和 模具内的冷凝水杂质。

挤压机的炉膛共分为上、中、下三个温控区,分 别设置对应炉膛的升温曲线,将中心炉膛的温度设 置成高于玻璃的软化温度(约 273 ℃),待温度达到 设定值后开始进行挤压,挤压过程由压力传感器进 行实时监控,挤压模具及原理示意图如图1所示。 挤压过程分为两步:第一步,启动电机将装有纤芯玻 璃的保护套管挤入包层玻璃中,待纤芯玻璃和包层 玻璃处于同一水平面时即可停止,如图 1(b)所示; 第二步,启动电机,同时对纤芯和包层玻璃进行挤 压,直至挤压结束,如图 1(c)所示。整个挤压过程 以固定的速率进行,以保证挤出来的预制棒表面光 滑。挤压出口配有退火炉,温度设置在玻璃转变温 度附近,保温2h后进行缓慢退火至室温,取出后即 可获得所需的预制棒,如图1(d)所示。为了获得更 高的芯包直径比,将第一次挤压获得的预制棒作为 纤芯,同样取相同尺寸的 As40 Se60 作为包层,如图 1 (e)所示放置后,进行上述挤压后即可获得更高的芯 包比预制棒。

图 1 挤压流程示意图。(a)~(c)一次挤压;(d)~(e)二次挤压

Fig. 1 Diagram of extrusion processes. (a) \sim (c) First extrusion; (d) \sim (e) second extrusion

众所周知,硫系玻璃光纤易碎不利于成盘保存, 为了增加光纤的柔韧性,选用聚合物塑料作为光纤 的保护层,还可以防止在拉丝过程中预制棒表面的 氧化。选择了与预制棒软化温度相近的聚醚砜树脂 (PES)配合光纤预制棒进行光纤拉制和保护。即在 对 PES 薄膜进行清洗、烘干后,将其严密地缠绕在 预 制 棒 表 面,然 后 将 有 PES 保 护 层 的 As₄₀ Se₅₈ Te₂/As₄₀ Se₆₀ 预制棒在真空烘烤箱中进行 真空热固化处理,再固定在拉丝塔(SG Controls, UK)中进行拉丝。为了避免拉丝温度过高可能引 发硫系玻璃析晶的风险,需严格控制拉丝温度。实 验采取了慢速拉丝方案:拉丝速率为 0.2 m/min,拉 丝温度严格控制在 283 ℃(误差 0.5 ℃);此外整个 光纤拉制过程中都采用了预热处理过的高纯氮气保 护^[25]来防止硫系玻璃表面在高温环境下的氧化风 险;最终获得长度约50m、直径为250μm的阶跃型 硫系光纤。利用该挤压装置挤压制得的预制棒的几 何结构非常规整,在光纤端面中没有观察到有明显 的芯包界面缺陷^[26],在气氛保护和慢速拉丝的相互 配合下,保证了低损耗 As-Se 光纤的成功制备。

2.3 玻璃和光纤的测试方法

玻璃样品的可见近红外光谱用 Perkin-Elmer Lamba 950 分光光度计测定,测量范围为 400 ~ 2500 nm;玻璃的红外透过光谱用 Nicolet 380 型傅 里叶红外光谱仪(FTIR)测定,测量范围为 2.5 ~ 25 μ m;玻璃的转变温度(T_g)和析晶温度(T_x)由 TA Q2000 差量扫描量热仪(DSC)测定;玻璃样品 的折射率用 IR-VASE Mark2 红外椭偏仪测定;用 Xenics 近红外光纤光场分析仪观察在近红外光入 射下的光纤端面光斑成像图;用 Keyence VHX1000-E光学显微镜观察光纤端面图;光纤的 传输损耗测试采用了截断法,测试仪器为 Nicolet 5700型傅里叶红外光谱仪。

3 结果与讨论

3.1 玻璃的物理性质

图 2 中给出了纤芯玻璃 As₄₀ Se₅₈ Te₂和包层玻 璃 As₄₀ Se₆₀ 的 DSC 曲线。由图中可以看出,红色曲 线为包层玻璃 As₄₀ Se₆₀,对应的 T_g 和 T_x 分别为 174 ℃和 370 ℃;蓝色曲线为纤芯玻璃 As₄₀ Se₅₈ Te₂,对应的 T_g 和 T_x 分别为 185 ℃和 372 ℃。可 以看出,纤芯玻璃和包层玻璃的 T_g 值比较相近,能 够进行挤压操作。纤芯和包层玻璃的 $\Delta T (T_x - T_g)$ 值分别对应为 187 ℃和 196 ℃,均高于 150 ℃, 表明了该玻璃具有较好的抗析晶能力。此外预制棒 的挤压温度为 273 ℃,远低于玻璃的析晶温度 T_x (370 ℃),较低的挤压温度可避免硫系玻璃的析晶 风险,有利于拉制低损耗的光纤。

图 2 $As_{40} Se_{58} Te_2 \pi As_{40} Se_{60}$ 玻璃的 DSC 曲线 Fig. 2 DSC curves of $As_{40} Se_{58} Te_2$ and $As_{40} Se_{60}$ glasses

3.2 玻璃的红外透过光谱分析

图 3 中的两条曲线分别对应为 $As_{40} Se_{58} Te_2$ (1.8 mm厚度)和 $As_{40} Se_{60}$ (2 mm 厚度)玻璃的红外 透过光谱。从图中可以看出,经过提纯后的纤芯玻 璃 $As_{40} Se_{58} Te_2$ (蓝色实线)除了在 $4.5 \sim 5 \mu$ m 处存 在 X - H(X 为 Se, Te, As 等元素)键杂质吸收峰 $外,未见其他明显杂质吸收峰, 15 <math>\mu$ m 附近为 $Se \sim$ Se 本征声子振动吸收峰。抽真空加热和封闭式整 体蒸馏工艺可有效去除游离水和氧化物杂质,从而 为降低光纤损耗奠定了材料制备基础。图中红色虚 线 为 未 做 纯 化 处 理 的 包 层 玻 璃 $As_{40} Se_{60}$, 在 2.98 μ m、6.28 μ m处存在明显的—OH 键和 H₂O 杂 质吸收峰, 9 μ m 处为 As—O 吸收峰, 11 μ m 处为 Se-O吸收峰。通过对比图 3 中的两条曲线,验证 了通过抽真空加热和蒸馏可以有效去除硫系玻璃中 的大部分杂质,在一定程度上提高了玻璃的透过率 和透过曲线的平整性,有效地降低了玻璃基质的传 输损耗。

图 3 As₄₀ Se₅₈ Te₂和 As₄₀ Se₆₀ 玻璃样品的红外透过光谱 Fig. 3 Infrared transmission spectra of As₄₀ Se₅₈ Te₂ and As₄₀ Se₅₀ glass samples

3.3 光纤结构参数及性能分析

通过两次多步挤压技术,获得了芯包结构预制 棒,然后在拉丝塔上进行拉丝,制备出芯包直径比为 1:25 的 As-Se 红外硫系光纤。光纤的结构参数如 图 4 所示,从图中可以看出,纤芯玻璃 As₄₀ Se₅₈ Te₂ (红色虚线)的折射率要高于包层玻璃(黑色实线), 保证了光纤波导结构的特性,两种玻璃的折射率随 波长分布在 2.75~2.87 μ m 之间,数值孔径(NA)的 值大约在 0.15~0.57 之间,根据 $NA = \sqrt{n_{core}^2 - n_{clad}^2}$ $(n_{core}$ 为纤芯折射率, n_{clad} 为包层折射率)和 $V = \frac{\pi d}{\lambda}$ NA(d 为纤芯直径, λ 为波长,V 为归一化频率),当 $d = 10 \ \mu$ m, $\lambda = 3.4 \ \mu$ m 时,计算可得 $V \approx 2.402$ (小 于 2.405),说明该光纤支持单模传输的条件。图 5 (a)为所制备的 As₄₀ Se₅₈ Te₂/As₄₀ Se₆₀ 阶跃型光纤 端面图,纤芯 直径为 10 μ m,放大倍率为 500 倍 (VHX-1000E,日本 Keyence)。图 5(b)为光纤的

图 4 As₄₀ Se₅₈ Te₂和 As₄₀ Se₆₀ 玻璃折射率及数值孔径 Fig. 4 Glass refractive index and numerical aperture of As₄₀ Se₅₈ Te₂ and As₄₀ Se₆₀ glasses

输出光斑图,入射激光波长是1480 nm,从图中可 以看出,纤芯具有良好的透光能力,如上所述,当 λ≥3.4 μm 时,光纤才能满足单模传输,而图 5(b) 中的光斑图,显示有轻微分裂现象,这表明当前入 射波长下该光纤处于多模传输状态。从图中可以 看到,即使是多模条件下,纤芯处的光场强度也远 高于包层的光场强度,这说明该阶跃光纤具有良 好的光场束缚能力。

图 5 (a) As₄₀ Se₅₈ Te₂/As₄₀ Se₆₀ 光纤的光纤端面; (b) As₄₀ Se₅₈ Te₂/As₄₀ Se₆₀ 光纤的光斑图 Fig. 5 (a) Fiber cross-section of $As_{40} Se_{58} Te_2 / As_{40} Se_{60}$ fiber; (b) light spot figure of $As_{40} Se_{58} Te_2 / As_{40} Se_{60}$ fiber

图 6 为采用截断法测得的光纤损耗图(光纤长 度约为2m)。从图中可以看出,该光纤的工作波段 可达 2.5~12 μm,虽然文献[27]所报道的阶跃型 As₂Se₃光纤损耗具有更低的 Se-H 峰(0.5 dB/m) 和低损耗(0.1 dB/m)特点,但其工作波段仅为 3~ 8 μm,与之相比,实验所制备的光纤具有更宽的工 作波段,可达 12 μm,更长红外波段则受限于 Se 原 子的本征声子振动引起的多声子吸收截止。虽然其 中存在的一些杂质吸收峰部分影响了光纤在相关局 部波长处的透光性能,如 3.5 μm 和 4.5 μm 处 Se-H 吸收峰、5 μm 处的 Te-H 吸收峰、8 μm 处较小 的 As-O 吸收峰,但在宽广的近、中远红外则几乎 没有其他的杂质吸收峰,其最低损耗为 1.66 dB/m (6.06 µm 处), 2.5~10 µm 波段范围内平均损耗约 为2.5 dB/m。光纤的色散数值模拟结果如图 7 所 示,其中虚线为材料色散,实线为光纤的基模色散, 可见整个基模色散曲线较为平坦,纤芯材料的零色 散波长大约为 9.5 μm,基模零色散波长大约 为7 µm。

图 7 As₄₀ Se₅₈ Te₂ / As₄₀ Se₆₀ 光纤模拟色散曲线图 (FM 为基模色散, material 为材料色散)

Fig. 7 Simulated dispersion curves of As40 Se58 Te2/As40 Se60 fiber (FM is the base mode dispersion, material is the material dispersion)

3.4 光纤的超连续谱测试

利用 OPA 分别在该阶跃型光纤的正常和反常 色散区进行抽运实验,所用光纤长度为15 cm,抽运 波长为 4.5 μm(正常色散区)和 8 μm(反常色散 区),脉冲宽度为150 fs,重复频率1 kHz,获得的SC 谱如图 8 所示。

在 8 μm 激光抽运下, 30 dB 带宽的 SC 谱宽可 达 2.2~12.8 µm,此时抽运脉冲的峰值功率为 1.334×10³ kW, 而在 4.5 μm 激光抽运时获得的 SC 谱宽为 1.7~12.5 μm(30 dB 带宽), 抽运脉冲的峰 值功率为 2.667×10³ kW,由此可见,要实现相同带 宽的 SC 谱输出,4.5 μm 激光抽运的功率需求要高 一倍。在正常色散区抽运时,虽然脉冲展宽所需要 的功率较高,但得益于飞秒激光脉冲的高峰值功率, 在4.5 μm抽运条件下依然实现了脉冲的极大展宽。 此外,由于光纤在 4.5 µm 处存在较大的 X—H 吸收 峰,这极大地影响了输出 SC 谱的平滑性(4~5 μm 处存在明显的下凹)。当带宽为 20 dB 时,4.5 μm 激光抽运下的谱宽为 2.2~12 μm,8 μm 激光抽运 下的谱宽为 3.6~12.4 μm,从图 8 中可以看出,在正 常色散区抽运产生的 SC 谱的平滑性要好于反常色 散抽运的。

图 8 光纤在不同波长激光抽运条件下获得的 SC 谱 Fig. 8 SC spectra generation in fiber with different pump wavelengths

4 结 论

本实验选用了具有较好红外透光的 As40 Se58 Te2和 As40 Se60作为该阶跃型光纤的纤芯和 包层基质,2%摩尔百分比的 Se 被 Te 替换,可有效 实现小数值孔径并达到单模传输条件,实现了从硫 系玻璃纯化制备、预制棒挤压制备到芯包结构光纤 拉制及性能测试的全过程,获得了损耗较低的阶跃 型单模 As-Se 玻璃光纤。经过蒸馏提纯后的 As40 Se₅₈Te₂玻璃,消除了绝大多数的杂质吸收峰。采用 两次多步挤压法制备了小芯包直径比 As40 Se58 Te2/ As40 Se60的预制棒并将其拉制成了阶跃型光纤,克 服了传统光纤芯包结构的缺陷,极大地改善了芯包 界面缺陷的不足,进而降低了光纤的结构损耗。通 过光学显微镜观察光纤端面,光纤端面芯包界面清 晰,无明显的缺陷或结构变形。采用截断法对光纤 进行损耗测试,其损耗为:1.66 dB/m@6.06 µm,整 体平均损耗约为 2.5 dB/m@2.5~10 μm。由于玻 璃中存在较强的一H杂质吸收峰,影响了光纤的工 作窗口(4~5 μm)。同时也严重影响了该光纤产生 SC 谱的平滑性,但得益于硫系光纤的高非线性和极 宽的中红外传输窗口,可获得带宽为40 dB, 谱宽为 1.5~13.2 μm的超宽中红外 SC 谱输出(8 μm 激光 抽运)。总之,本实验证明了,利用挤压法可制备出 低损耗、结构理想的 As40 Se58 Te2 / As40 Se60 阶跃型单 模光纤,光纤的工作波段为 2.5~12 μm,较好地满 足了近、中远红外光学光纤技术应用的材料需求。

同时,随着玻璃制备工艺的改良和进步,硫系光纤的 传输损耗将有望进一步降低,从而更好地满足应用 需求。

参考文献

- Schliesser A, Picque N, Hansch T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.
- [2] Allen M G. Diode laser absorption sensors for gasdynamic and combustion flows [J]. Measurement Science & Technology, 1998, 9(4): 545-562.
- [3] Steinmeyer G, Skibina J S. Supercontinua: Entering the mid-infrared [J]. Nature Photonics, 2014, 8 (11): 814-815.
- [4] Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the midinfrared[J]. Optics Letters, 2014, 39(4): 910-913.
- [5] Liao M S, Qin G S, Yan X, et al. A Tellurite nanowire with long suspended struts for lowthreshold single-mode supercontinuum generation [J]. Journal of Lightwave Technology, 2011, 29(2): 194-199.
- [6] Yu Y, Zhang B, Gai X, et al. 1.8-10 μm midinfrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power [J]. Optics Letters, 2015, 40(6): 1081-1084.
- Cheng T L, Kanou Y, Xue X J, et al. Mid-infrared supercontinuum generation in a novel AsSe₂-As₂ S₅ hybrid microstructured optical filer [J]. Optics Express, 2014, 22(19): 23019-23025.
- [8] Gao W Q, Amraoui M E, Liao M S, et al. Midinfrared supercontinuum generation in a suspendedcore As₂S₃ chalcogenide microstructured optical fiber [J]. Optics Express, 2013, 21(8): 9573-9583.
- [9] Pigeon J J, Tochitsky S Y, Gong C, et al. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO₂ laser pulses [J]. Optics Letters, 2014, 39(11): 3246-3249.
- [10] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.
- [11] Shiryaev V S, Churbanov M F. Trends and prospects for development of chalcogenide fibers for midinfrared transmission [J]. Journal of Non-Crystalline Solids, 2013, 377: 225-230.
- [12] Petersen C R, Møller U, Kubat I, et al. Midinfrared supercontinuum covering the 1. 4-13. 3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre [J]. Nature Photonics,

2014, 8(11): 830-834.

- [13] Theberge F, Thire N, Daigle J F, et al. Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers [J]. Optics Letters, 2014, 39 (22): 6474-6477.
- [14] Chang T L, Nagasaka K, Tuan T H, et al. Midinfrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.
- [15] Guo W, Zhang B, Zhai C C, et al. Fabrication and application of small core chalcogenide glass fibers in nonlinear optics [J]. Journal of Inorganic Materials, 2016, 31(2): 180-184.

郭威,张斌,翟诚诚,等.小芯径硫系玻璃光纤的制 备及其非线性光学应用[J].无机材料学报,2016, 31(2):180-184.

- [16] Wang Y Y, Dai S X, Luo B H, et al. Progress in infrared supercontinuum generation in chalcogenide glass fibers [J]. Laser & Optoelectronics Progress, 2016, 53(9): 090005.
 王莹莹,戴世勋,罗宝华,等.硫系光纤红外超连续 谱输出研究进展[J].激光与光电子学进展, 2016,
- [17] Møller U, Yu Y, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber [J]. Optics Express, 2015, 23(3): 3282-3291.

53(9): 090005.

- [18] Liu L, Cheng T L, Nagasaka K, et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.
- [19] Sun Y N, Dai S X, Zhang P Q, et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures [J]. Optics Express, 2015, 23(18): 23472-23483.
- [20] Zhao Z M, Wu B, Liu Y J, et al. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber [J]. Acta Physica Sinica, 2016, 65 (12): 124205.

赵浙明, 吴波, 刘雅洁, 等. 低损耗 Ge-As-Se-Te 硫 系玻璃远红外光纤的性能分析[J]. 物理学报, 2016, 65(12): 124205.

- [21] Zhao Z M, Wang X S, Dai S X, et al. 1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber [J]. Optics Letters, 2016, 41(22): 5222-5225.
- [22] Wu B, Zhao Z M, Wang X S, et al. Investigation on Te-based chalcogenide glasses for far-infrared fibe
 [J]. Acta Physica Sinica, 2017, 66(13): 134208.
 吴波,赵浙明,王训四,等. Te 基远红外硫系玻璃光 纤的制备及性能分析[J].物理学报, 2017, 66(13): 134208.
- [23] Zhao Z M, Wu B, Wang X S, et al. Mid-infrared supercontinuum covering 2. 0-16 μm in a low-loss telluride single-mode fiber [J]. Laser and Photonics Review, 2017, 11(2): 1700005.
- [24] Nie Q H, Wang G X, Wang X S, et al. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses [J]. Acta Physica Sinica, 2010, 59(11): 7949-7955.
 聂秋华,王国祥,王训四,等.Ga 对新型远红外 Te 基硫系玻璃光学性能的影响[J].物理学报, 2010, 59(11): 7949-7955.
- [25] Liu S, Tang J Z, Liu Z J, et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method [J]. Acta Optica Sinica, 2016, 36(10): 1006002.
 刘硕,唐俊州,刘自军,等.低损耗硫系玻璃光纤的挤压制备及其性能研究[J].光学学报, 2016, 36(10): 1006002.
- [26] Jiang C, Wang X S, Zhu M M, et al. Preparation of chalcogenide glass fiber using an improved extrusion method [J]. Optical Engineering, 2016, 55 (5): 056114.
- [27] Robichaud L R, Fortin V, Gauthier J C, et al. Compact 3-8 μm supercontinuum generation in a lowloss As₂Se₃ step-index fiber [J]. Optics Letters, 2016, 41(20): 4605-4608.